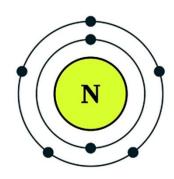
Chemistry Study Materials for Class 9 (NCERT Questions –Answers of Chapter -04) Ganesh Kumar Date:- 17/07/2021

Structure of the Atom

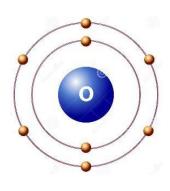

ELECTRONIC CONFIGURATION OF ELEMENTS –

Electronic configuration of Nitrogen

Atomic number of nitrogen = 7.

Therefore number of electrons = 7

Thus, electronic configuration of nitrogen is

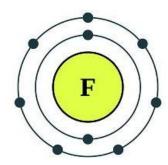

Number of orbit in nitrogen = 2

Electronic configuration of Oxygen

Atomic number of oxygen = 8.

Therefore number of electrons = 8.

Thus, electronic configuration of oxygen is

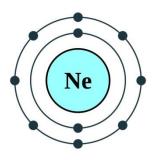

Number of orbit in oxgyen = 2

Electronic configuration of Fluorine

Atomic number of fluorine = 9

Therefore number of electrons = 9

Thus, electronic configuration of fluorine is


Number of orbit in fluorine = 2

Electronic configuration of Neon

Atomic number of neon = 10

Therefore number of electrons = 10

Thus, electronic configuration of neon is

Number of orbit in Neon = 2

Electronic configuration of Sodium

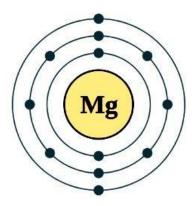
Atomic number of sodium = 11

Therefore number of electrons = 11

Since, in ^{2nd} orbit the maximum number of electrons is equal to 8 and there are 11 electrons in sodium atom, thus the eleventh electron will go in third orbit.

Thus, electronic configuration of sodium is

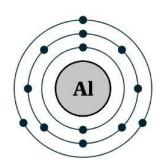
Number of orbit in sodium = 3


Electronic configuration of

Magnesium Atomic number of

magnesium = 12 Therefore

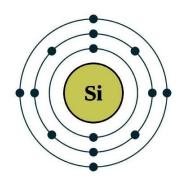
number of electrons = 12


Thus, electronic configuration of magnesium is

Number of orbit in magnesium = 3.

Electronic configuration of Aluminium

Atomic number of aluminium = 13. Therefore number of electrons = 13. Thus, electronic configuration of aluminium is

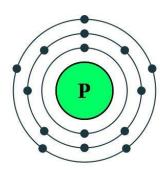

Number of orbit in aluminium = 3

Electronic configuration of Silicon

Atomic number of silicon = 14

Therefore number of electrons = 14

Thus, electronic configuration of silicon is

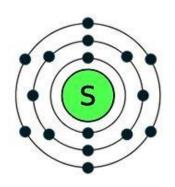

Number of orbit in silicon = 3

Electronic configuration of Phosphorous (P)

Atomic number of phosphorous = 15

Therefore number of electrons = 15

Thus, electronic configuration of phosphorous is

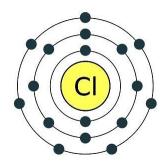


Number of orbit in phosphorous = 3

Electronic configuration of Sulphur (S)

Atomic number of sulphur = 16 Therefore number of electrons = 15

Thus, electronic configuration of sulphur is

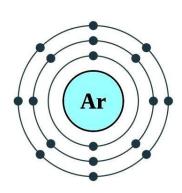

Number of orbit in sulphur = 3

Electronic configuration of Chlorine (CI)

Atomic number of chlorine = 17

Therefore number of electrons = 17

Thus, electronic configuration of chlorine is

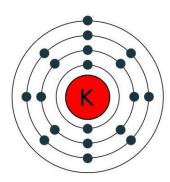

Number of orbit in chlorine = 3

Electronic configuration of Argon (Ar)

Atomic number of argon = 18

Therefore number of electrons = 18

Thus, electronic configuration of argon is

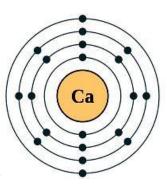

Number of orbit in argon = 3

Electronic configuration of Potassium (K)

Atomic number of potassium = 19

Therefore number of electrons = 19

Since, maximum number of electrons in outermost orbit will not be more than 8, thus the 19th electron of potassium atom will reside in 4th orbit.


Thus, electronic configuration of potassium is

Number of orbit in potassium = 4

Electronic configuration of Calcium (Ca)

Atomic number of calcium = 20

Therefore number of electrons = 20

Thus, electronic configuration of calcium is

Number of orbit in calcium = 4
